
期刊简介
《法医学杂志》(CN 31-1472/R,ISSN 1004-5619)创刊于1985年7月,由中华人民共和国司法部主管、司法部司法鉴定科学技术研究所主办,是我国第一本向国内外公开发行的国家级法医学专业学术刊物。本刊创刊时为每期48页季刊,1996年改为每期64页,2005年改为每期80页,2006年变更为每期80页双月刊。2009年起正文纸张由80克双胶纸改为80克UPM雅光纸,采用了图文混排方式。
《法医学杂志》的办刊宗旨为:提供法医学及其相关学科的新理论、新技术、新方法等信息,为维护司法公正、贯彻依法治国的方略服务,促进国内外同行的学术交流和本学科的发展。
《法医学杂志》刊登的主要内容包括:法医病理学、法医临床学、法医物证学、司法精神病学、法医毒理学、法医昆虫学和毒(药)物分析、医疗纠纷、医疗事故的法医学鉴定以及交通事故鉴定等现代司法鉴定科学方面的最新成果和动态。既刊登大量国家自然科学基金等大型项目资助的创新性科研成果,也刊登许多对实际鉴定工作大有帮助的实用性技术和经验交流类文章,全面地为法医工作者提供科研、教学、检案等方面的新动向、新进展、新技术、新经验。
开设的栏目有:研究论著、技术与应用、案例分析、经验交流、医疗纠纷、疑难案例报道、综述、专题讲座和教育培训等。
主要作者和读者群为:公安、检察、法院、司法行政系统等部门的法医工作者,各类司法鉴定机构中的法医学鉴定人,高校法医院系、法律系的师生,卫生医疗单位的医务人员和法律工作者。
本刊编辑部多年来奉行高水平、高质量、高品位的办刊方针,在办刊中严格执行有关国家标准和规范以及审校制度,编辑人员对稿件的处理精益求精。录用文章学术水平高,实用性强,栏目内容丰富,版面设计合理,图表制作精确,印刷装帧精良,深受法医学界专业人员、高校师生及司法鉴定领域中相关人员的欢迎和认可。为促进法医学学科发展、提高本学科的科研和检案水平以及法医学人才培养作出了重要贡献。
本刊自1997年被美国生物医学文献资料数据库MEDLINE收录,是中国第一也是目前唯一一本进入该数据库的法医学类期刊。自1999年起陆续被《万方数据》、《中国学术期刊(光盘版)》、《中国学术期刊综合评价数据库》统计源期刊、《中国期刊全文数据库》、《中国核心期刊(遴选)数据库》等全文收录;被全国医学综合性检索工具《中文科技资料目录-医药卫生》列为核心期刊收录;获首届《CAJ-CD规范》执行优秀期刊奖。2008年起本刊被确定为荷兰医学文摘(EMBASE)数据库收录期刊和中国《全国报刊索引》核心期刊。2009年被“中国科技论文统计源期刊”(中国科技核心期刊)收录。2011年被中国科学引文数据库(CSCD)收录。2012年被Elsevier公司二次文献数据库(Scopus)收录。2013年 超星数字期刊。2015年 第四届《中国学术期刊评价研究报告(武大版)(2015-2016)》中,被评为“RCCSE中国核心学术期刊(A)”。2016年4月《法医学杂志》被中国社会科学院中国社会科学评价中心《中国人文社会科学期刊评价报告(AMI)》的引文数据库收录为来源刊;10月,获准加入WHO西太平洋区医学索引(The Western Pacific Region Index Medicus, WPRIM)。
根据期刊引证报告最新统计,《法医学杂志》影响因子逐年上升,目前在法医学类期刊中,其影响因子名列榜首。
如何识别时间序列数据中的偏差?
时间:2024-11-28 17:51:39
可视化方法
绘制时间序列图:将时间序列数据绘制成折线图,直观地观察数据随时间的变化趋势。如果数据存在偏差,可能会出现不符合预期规律的情况。
季节性和周期性分解图:对于具有季节性或周期性的时间序列,可以使用季节性分解或周期图来观察。如果分解后的季节性成分或周期成分出现异常的形状、强度或相位变化,可能提示数据偏差。
平稳性检验(针对非季节性数据):常用的方法有 ADF(Augmented Dickey - Fuller)检验和 KPSS(Kwiatkowski - Phillips - Schmidt - Shin)检验。如果数据应该是平稳的,但检验结果显示非平稳,且通过观察序列图没有发现明显的趋势或结构变化,可能是数据存在偏差。
白噪声检验:白噪声序列是指序列中的各项是相互独立且均值为零、方差恒定的随机变量。通过 Ljung - Box 检验等方法来检查时间序列是否为白噪声。如果数据应该不是白噪声(如存在趋势或季节性),但检验结果显示是白噪声,或者反之,可能是数据存在偏差。例如,在分析气温的时间序列时,正常情况下气温序列不是白噪声,因为有明显的季节性和趋势,如果检验结果显示是白噪声,可能是数据记录的时间间隔错误或者数据缺失导致的。
正态性检验(如果适用):对于一些时间序列模型(如基于正态分布假设的模型),可以使用 Shapiro - Wilk 检验或 QQ 图来检查数据的正态性。如果数据严重偏离正态分布,且这种偏离不符合数据的实际性质,可能是数据偏差。与行业数据对比:将自己的时间序列数据与同行业的其他可靠数据来源进行对比。如果差异显著,可能存在数据偏差。
与历史数据对比(如果有):如果有同一变量的历史数据,比较当前时间序列和历史数据的特征。
与预期模式对比:根据业务知识、领域理论或经验预期,判断时间序列数据是否符合正常模式。残差分析(针对拟合模型):在拟合时间序列模型(如 ARIMA 模型、指数平滑模型等)后,检查模型残差。残差应该是随机分布且均值接近零、方差相对稳定。如果残差呈现出明显的趋势、周期性或自相关性,可能是数据存在偏差或者模型设定错误。
参数稳定性检查(针对动态模型):对于具有自适应或动态参数的时间序列模型(如时变参数模型),检查参数是否在合理范围内稳定变化。如果参数出现突然的跳跃、不合理的增长或衰减,可能是数据偏差导致模型过度拟合或错误估计。例如,在卡尔曼滤波模型用于跟踪目标位置的时间序列时,如果位置参数出现不合理的突变,可能是传感器数据的偏差导致的。