法医学杂志

期刊简介

  《法医学杂志》(CN 31-1472/R,ISSN 1004-5619)创刊于1985年7月,由中华人民共和国司法部主管、司法部司法鉴定科学技术研究所主办,是我国第一本向国内外公开发行的国家级法医学专业学术刊物。本刊创刊时为每期48页季刊,1996年改为每期64页,2005年改为每期80页,2006年变更为每期80页双月刊。2009年起正文纸张由80克双胶纸改为80克UPM雅光纸,采用了图文混排方式。

  《法医学杂志》的办刊宗旨为:提供法医学及其相关学科的新理论、新技术、新方法等信息,为维护司法公正、贯彻依法治国的方略服务,促进国内外同行的学术交流和本学科的发展。

  《法医学杂志》刊登的主要内容包括:法医病理学、法医临床学、法医物证学、司法精神病学、法医毒理学、法医昆虫学和毒(药)物分析、医疗纠纷、医疗事故的法医学鉴定以及交通事故鉴定等现代司法鉴定科学方面的最新成果和动态。既刊登大量国家自然科学基金等大型项目资助的创新性科研成果,也刊登许多对实际鉴定工作大有帮助的实用性技术和经验交流类文章,全面地为法医工作者提供科研、教学、检案等方面的新动向、新进展、新技术、新经验。

  开设的栏目有:研究论著、技术与应用、案例分析、经验交流、医疗纠纷、疑难案例报道、综述、专题讲座和教育培训等。

  主要作者和读者群为:公安、检察、法院、司法行政系统等部门的法医工作者,各类司法鉴定机构中的法医学鉴定人,高校法医院系、法律系的师生,卫生医疗单位的医务人员和法律工作者。

  本刊编辑部多年来奉行高水平、高质量、高品位的办刊方针,在办刊中严格执行有关国家标准和规范以及审校制度,编辑人员对稿件的处理精益求精。录用文章学术水平高,实用性强,栏目内容丰富,版面设计合理,图表制作精确,印刷装帧精良,深受法医学界专业人员、高校师生及司法鉴定领域中相关人员的欢迎和认可。为促进法医学学科发展、提高本学科的科研和检案水平以及法医学人才培养作出了重要贡献。

  本刊自1997年被美国生物医学文献资料数据库MEDLINE收录,是中国第一也是目前唯一一本进入该数据库的法医学类期刊。自1999年起陆续被《万方数据》、《中国学术期刊(光盘版)》、《中国学术期刊综合评价数据库》统计源期刊、《中国期刊全文数据库》、《中国核心期刊(遴选)数据库》等全文收录;被全国医学综合性检索工具《中文科技资料目录-医药卫生》列为核心期刊收录;获首届《CAJ-CD规范》执行优秀期刊奖。2008年起本刊被确定为荷兰医学文摘(EMBASE)数据库收录期刊和中国《全国报刊索引》核心期刊。2009年被“中国科技论文统计源期刊”(中国科技核心期刊)收录。2011年被中国科学引文数据库(CSCD)收录。2012年被Elsevier公司二次文献数据库(Scopus)收录。2013年 超星数字期刊。2015年 第四届《中国学术期刊评价研究报告(武大版)(2015-2016)》中,被评为“RCCSE中国核心学术期刊(A)”。2016年4月《法医学杂志》被中国社会科学院中国社会科学评价中心《中国人文社会科学期刊评价报告(AMI)》的引文数据库收录为来源刊;10月,获准加入WHO西太平洋区医学索引(The Western Pacific Region Index Medicus, WPRIM)。

  根据期刊引证报告最新统计,《法医学杂志》影响因子逐年上升,目前在法医学类期刊中,其影响因子名列榜首。

               

【论文写作技巧】图表设计中对齐的重要性

时间:2025-07-31 15:29:03

在学术论文的视觉战场上,图表是突破审稿人认知防线的第一梯队。当研究者试图阐述神经网络在图像识别中的技术演进时,精心设计的图表能像卷积核提取特征般,精准捕获读者注意力。神经网络的层级结构与图像识别任务的复杂性,恰好为图表心理学应用提供了天然的实验场域。

视觉认知的格式塔原则在柱状图设计中体现得尤为显著。以对比不同神经网络模型在ImageNet数据集上的识别准确率为例,采用冷暖色调交替的柱体排列,能激活读者对“优势模型”的瞬时判断。若将ResNet-50与VGG-16的对比数据配以深蓝与浅灰的视觉编码,这种色彩心理学策略可使审稿人在0.3秒内完成关键信息抓取,正如卷积神经网络通过权值矩阵快速定位图像特征。需注意柱体宽度与间距的黄金分割比例,过密的排列会产生类似网络层间梯度消失的阅读障碍。

折线图的叙事张力堪比LSTM网络的时间序列处理能力。展示神经网络参数量与识别精度的关系曲线时,采用双Y轴设计需慎之又慎——这如同在神经网络中引入残差连接,既要保留原始数据趋势,又要凸显对比维度。用虚线标记ImageNet竞赛准确率的人类基准线,相当于在特征空间中设置决策边界,让技术突破点自动跃入读者视域。当曲线出现类似RNN的振荡波动时,可运用平滑处理技术,但需在脚注说明算法参数,避免产生过拟合数据的误解。

散点图在表征高维数据分布时,堪比自编码器的降维艺术。展示不同神经网络提取的图像特征聚类时,采用HSL色彩空间的三通道映射,能实现比RGB更符合人类感知的视觉分层。将ResNet提取的特征点渲染为半透明渐变圆斑,Transformer架构的特征点设计为棱角分明的几何体,这种形态语义学设计能使读者直观感知不同网络架构的特征提取风格差异。当散点密度达到卷积层激活图水平时,可叠加核密度等高线,形成类似注意力机制的热力引导。

图表注释系统的微设计藏着门道。引用神经网络特有的评价指标时,F1值的脚注解释应如同网络中的残差模块——简明扼要却不可或缺。建议采用三段式标注法:首段定义公式,中段说明计算路径,末段关联论文实验设置,这种结构恰似神经网络的输入-隐藏-输出层设计,形成完整的信息处理闭环。对于图像识别任务特有的mAP指标,可嵌入迷你混淆矩阵图标,将抽象概念具象化为视觉锚点。

在视觉叙事节奏把控上,可借鉴神经网络的深度架构思想。将总参数量变化趋势图设为论文第三部分的视觉焦点,就像把残差块放置在网络关键层。配套的损失函数收敛曲线建议采用小图联排展示,形成类似Inception模块的多尺度观察视角。当涉及模型鲁棒性分析时,对抗样本的可视化对比应置于图表序列末端,这符合人类认知的峰值-终值效应规律,确保审稿人对研究亮点的记忆留存。

数据呈现的“减法哲学”在热力图中得到完美诠释。展示神经网络各卷积层激活区域时,采用α通道透明度梯度调节,比直接显示原始特征图更具科学美感。这种设计如同Dropout层对神经网络的精简,既能突出关键激活区域,又避免了信息过载带来的认知干扰。对于目标检测中的边界框可视化,建议采用高斯模糊边缘处理,这与Non-Maximum Suppression算法的原理异曲同工,使视觉焦点自然汇聚于预测框核心区域。

在图表与正文的协同机制构建上,需遵循注意力对齐原则。当讨论神经网络深度对图像识别性能的影响时,配套的趋势图应精准对应正文中的转折论点,如同CNN中池化层与卷积层的交替配合。引用开源工具实现的可视化案例时,需在脚注标注TensorBoard或PyTorchVis版本号,这种严谨性标注如同神经网络中的正则化操作,能有效提升研究成果的可信度。