
期刊简介
《法医学杂志》(CN 31-1472/R,ISSN 1004-5619)创刊于1985年7月,由中华人民共和国司法部主管、司法部司法鉴定科学技术研究所主办,是我国第一本向国内外公开发行的国家级法医学专业学术刊物。本刊创刊时为每期48页季刊,1996年改为每期64页,2005年改为每期80页,2006年变更为每期80页双月刊。2009年起正文纸张由80克双胶纸改为80克UPM雅光纸,采用了图文混排方式。
《法医学杂志》的办刊宗旨为:提供法医学及其相关学科的新理论、新技术、新方法等信息,为维护司法公正、贯彻依法治国的方略服务,促进国内外同行的学术交流和本学科的发展。
《法医学杂志》刊登的主要内容包括:法医病理学、法医临床学、法医物证学、司法精神病学、法医毒理学、法医昆虫学和毒(药)物分析、医疗纠纷、医疗事故的法医学鉴定以及交通事故鉴定等现代司法鉴定科学方面的最新成果和动态。既刊登大量国家自然科学基金等大型项目资助的创新性科研成果,也刊登许多对实际鉴定工作大有帮助的实用性技术和经验交流类文章,全面地为法医工作者提供科研、教学、检案等方面的新动向、新进展、新技术、新经验。
开设的栏目有:研究论著、技术与应用、案例分析、经验交流、医疗纠纷、疑难案例报道、综述、专题讲座和教育培训等。
主要作者和读者群为:公安、检察、法院、司法行政系统等部门的法医工作者,各类司法鉴定机构中的法医学鉴定人,高校法医院系、法律系的师生,卫生医疗单位的医务人员和法律工作者。
本刊编辑部多年来奉行高水平、高质量、高品位的办刊方针,在办刊中严格执行有关国家标准和规范以及审校制度,编辑人员对稿件的处理精益求精。录用文章学术水平高,实用性强,栏目内容丰富,版面设计合理,图表制作精确,印刷装帧精良,深受法医学界专业人员、高校师生及司法鉴定领域中相关人员的欢迎和认可。为促进法医学学科发展、提高本学科的科研和检案水平以及法医学人才培养作出了重要贡献。
本刊自1997年被美国生物医学文献资料数据库MEDLINE收录,是中国第一也是目前唯一一本进入该数据库的法医学类期刊。自1999年起陆续被《万方数据》、《中国学术期刊(光盘版)》、《中国学术期刊综合评价数据库》统计源期刊、《中国期刊全文数据库》、《中国核心期刊(遴选)数据库》等全文收录;被全国医学综合性检索工具《中文科技资料目录-医药卫生》列为核心期刊收录;获首届《CAJ-CD规范》执行优秀期刊奖。2008年起本刊被确定为荷兰医学文摘(EMBASE)数据库收录期刊和中国《全国报刊索引》核心期刊。2009年被“中国科技论文统计源期刊”(中国科技核心期刊)收录。2011年被中国科学引文数据库(CSCD)收录。2012年被Elsevier公司二次文献数据库(Scopus)收录。2013年 超星数字期刊。2015年 第四届《中国学术期刊评价研究报告(武大版)(2015-2016)》中,被评为“RCCSE中国核心学术期刊(A)”。2016年4月《法医学杂志》被中国社会科学院中国社会科学评价中心《中国人文社会科学期刊评价报告(AMI)》的引文数据库收录为来源刊;10月,获准加入WHO西太平洋区医学索引(The Western Pacific Region Index Medicus, WPRIM)。
根据期刊引证报告最新统计,《法医学杂志》影响因子逐年上升,目前在法医学类期刊中,其影响因子名列榜首。
医学统计中t检验的常见误区与改进
时间:2025-07-15 16:04:37
在医学论文写作中,统计方法的正确应用是确保研究结论可靠性的基石。然而,许多新手研究者常因对统计原理理解不足或操作不规范而陷入误区。以t检验为例,这种用于比较两组均值差异的经典方法,在实际应用中却存在以下高频错误及改进策略:
误区一:忽视正态性检验的适用条件
t检验的核心假设之一是数据服从正态分布,尤其在样本量较小时(如n<30),必须通过Shapiro-Wilk或Kolmogorov-Smirnov检验验证差值正态性。常见错误是直接默认数据符合正态性,导致检验效能下降。例如,某研究比较两种降压药效果时,未对20例患者的血压差值进行正态检验,可能得出虚假显著性结论。解决方案是:当样本量少时,优先绘制反趋势正态概率图并报告Lilliefors显著性水平;若数据非正态,可采用Wilcoxon符号秩检验等非参数方法替代。
误区二:混淆独立样本与配对样本的设计类型
配对t检验要求两组数据存在天然配对关系(如同一患者治疗前后测量),而独立样本t检验适用于完全不同的两组对象。曾有研究错误地将50例实验组与50例对照组的血糖值进行配对分析,忽视了两组样本的独立性。关键区别在于:配对检验通过消除个体间变异提高灵敏度,其标准误计算依赖于配对差值的协方差。因此,研究设计阶段必须明确数据关联性,并在方法学部分清晰标注使用何种t检验亚型。
误区三:样本量不足或误用大样本规则
虽然t检验对样本量无严格下限,但小样本(如n=10)会大幅增加II类错误风险。相反,当样本量极大(如n>1000)时,t检验会过度敏感,微小的均值差异也可能呈现统计学显著性,但无临床意义。典型错误是某百例肿瘤标志物研究未计算效应量,仅报告p<0.05即断言差异重要。建议遵循双重标准:小样本研究需预先进行功效分析确保至少80%检验效能;大样本研究应结合效应量(如Cohen’s d)和置信区间综合解读。
误区四:忽略方差齐性前提
独立样本t检验要求两组方差齐同,但新手常遗漏Levene检验步骤。例如,比较新旧疗法时,若实验组方差显著高于对照组(F=5.2, p=0.02),仍使用常规t检验会导致结果偏倚。此时应选择Welch校正t检验,其自动调整自由度以应对异方差情况。具体操作建议:在SPSS等软件中勾选"Equal variances not assumed"选项,并在论文中注明校正后的自由度值。
误区五:多重比较未校正
在同时比较多组均值时(如三种药物剂量组),连续进行两两t检验会使整体I类错误率膨胀。某镇痛药研究对A/B、A/C、B/C三组分别做t检验,未校正α水平,假阳性率实际可达14.3%。正确的处理方式是:若计划性比较少于3组,可采用Bonferroni法调整显著性阈值(如0.05/3=0.017);若探索性分析涉及多组,建议改用ANOVA联合事后检验。
统计方法的准确描述如同医学诊断的鉴别诊断流程——每个假设条件都需系统验证。研究者应在论文方法部分明确报告:正态性检验结果、t检验类型选择依据、效应量指标及多重比较校正方式。通过规范化的统计叙事,才能让数据真正成为支撑医学发现的坚实证据链。