
期刊简介
《法医学杂志》(CN 31-1472/R,ISSN 1004-5619)创刊于1985年7月,由中华人民共和国司法部主管、司法部司法鉴定科学技术研究所主办,是我国第一本向国内外公开发行的国家级法医学专业学术刊物。本刊创刊时为每期48页季刊,1996年改为每期64页,2005年改为每期80页,2006年变更为每期80页双月刊。2009年起正文纸张由80克双胶纸改为80克UPM雅光纸,采用了图文混排方式。
《法医学杂志》的办刊宗旨为:提供法医学及其相关学科的新理论、新技术、新方法等信息,为维护司法公正、贯彻依法治国的方略服务,促进国内外同行的学术交流和本学科的发展。
《法医学杂志》刊登的主要内容包括:法医病理学、法医临床学、法医物证学、司法精神病学、法医毒理学、法医昆虫学和毒(药)物分析、医疗纠纷、医疗事故的法医学鉴定以及交通事故鉴定等现代司法鉴定科学方面的最新成果和动态。既刊登大量国家自然科学基金等大型项目资助的创新性科研成果,也刊登许多对实际鉴定工作大有帮助的实用性技术和经验交流类文章,全面地为法医工作者提供科研、教学、检案等方面的新动向、新进展、新技术、新经验。
开设的栏目有:研究论著、技术与应用、案例分析、经验交流、医疗纠纷、疑难案例报道、综述、专题讲座和教育培训等。
主要作者和读者群为:公安、检察、法院、司法行政系统等部门的法医工作者,各类司法鉴定机构中的法医学鉴定人,高校法医院系、法律系的师生,卫生医疗单位的医务人员和法律工作者。
本刊编辑部多年来奉行高水平、高质量、高品位的办刊方针,在办刊中严格执行有关国家标准和规范以及审校制度,编辑人员对稿件的处理精益求精。录用文章学术水平高,实用性强,栏目内容丰富,版面设计合理,图表制作精确,印刷装帧精良,深受法医学界专业人员、高校师生及司法鉴定领域中相关人员的欢迎和认可。为促进法医学学科发展、提高本学科的科研和检案水平以及法医学人才培养作出了重要贡献。
本刊自1997年被美国生物医学文献资料数据库MEDLINE收录,是中国第一也是目前唯一一本进入该数据库的法医学类期刊。自1999年起陆续被《万方数据》、《中国学术期刊(光盘版)》、《中国学术期刊综合评价数据库》统计源期刊、《中国期刊全文数据库》、《中国核心期刊(遴选)数据库》等全文收录;被全国医学综合性检索工具《中文科技资料目录-医药卫生》列为核心期刊收录;获首届《CAJ-CD规范》执行优秀期刊奖。2008年起本刊被确定为荷兰医学文摘(EMBASE)数据库收录期刊和中国《全国报刊索引》核心期刊。2009年被“中国科技论文统计源期刊”(中国科技核心期刊)收录。2011年被中国科学引文数据库(CSCD)收录。2012年被Elsevier公司二次文献数据库(Scopus)收录。2013年 超星数字期刊。2015年 第四届《中国学术期刊评价研究报告(武大版)(2015-2016)》中,被评为“RCCSE中国核心学术期刊(A)”。2016年4月《法医学杂志》被中国社会科学院中国社会科学评价中心《中国人文社会科学期刊评价报告(AMI)》的引文数据库收录为来源刊;10月,获准加入WHO西太平洋区医学索引(The Western Pacific Region Index Medicus, WPRIM)。
根据期刊引证报告最新统计,《法医学杂志》影响因子逐年上升,目前在法医学类期刊中,其影响因子名列榜首。
Nature:复杂组织可以被安全的重新编程到更年轻的状态,成功逆转青光眼引起的视力损失
时间:2024-12-03 15:26:40
自古以来,皇帝们为了“万岁万岁万万岁”而劳民伤财、孜孜不倦、日复一日地铸造“长生不老丹”,投入了大量的“科研经费”。
可时至今日,也未见可长生不老的法子。
然而,近日Nature发表了哈佛医学院David Sinclair团队的一项研究成果:发现复杂组织可以被安全的重新编程到更年轻的状态,成功逆转青光眼引起的视力损失。
该研究证明了老化或损伤的器官可以重新焕发年轻活力,待人体各组织的老化被攻克,“长生不老”也许指日可待了。
复杂组织可以被安全的重新编程到更年轻的状态,成功逆转青光眼引起的视力损失" 复杂组织可以被安全的重新编程到更年轻的状态,成功逆转青光眼引起的视力损失
研究背景
衰老是导致组织功能障碍和死亡的退化过程。衰老的一个可能原因是表观遗传改变的积累破坏了基因表达模式,导致组织功能和再生能力下降。随着时间的推移,DNA甲基化模式的改变形成了“衰老时钟”的基础,但是老年人是否保留了恢复这些模式所需的信息尚不清楚。如果保留了,是否能改善组织功能也不清楚。
在细胞培养中,四种Yamanaka转录因子OCT4,SOX2,KLF4和MYC(OSKM)的异位表达可以将培养的体细胞重新编程为多能干细胞,这一过程可消除细胞身份并重置DNA甲基化。另外,这四种因子在小鼠体内的持续表达,往往会诱发畸胎瘤或导致小鼠在几天内死亡。显然,消除细胞身份、导致畸胎瘤(死亡)都不是科学家为了使老化的器官恢复年轻化所想要的。
研究内容与结果
研究人员的第一个目标是找到一种方法,在不消除细胞身份的情况下重置表观基因组。先前研究报道,MYC基因的表达与小鼠寿命缩短有关,而且没有细胞重编程也照样能启动。
因此,研究从Yamanaka因子中剔除MYC,只保留了OCT4、SOX2和KLF4,并命名这个新组合为OSK。
实验结果表明,在小鼠成纤维细胞中,OSK表达5天后促使mRNA谱变的年轻化,而不会明显丧失细胞特性或诱导NANOG(一种指示多潜能和致癌性的转录因子)。
随后研究人员设计了一个双腺相关病毒(AAV)系统,在一个四环素反应元件(TRE)启动子的严格控制下在小鼠中传递和控制OSK的表达。在OSK连续诱导10-18个月后,没有观察到肿瘤发病率的增加或对整体健康的负面影响,表明表达OSK的细胞保持了细胞特性,证明了OSK在体内的长期安全性。
在哺乳动物中,第一个失去再生能力的系统是中枢神经系统。因此研究人员选择了视网膜神经节细胞(RGCs)作为研究对象。视网膜神经节细胞(RGCs)的中枢神经系统投射轴突远离视网膜形成视神经。目前还没有治疗方法可以恢复晚期青光眼或老年人的视力。
为了检验OSK是否能让视网膜神经节细胞恢复初的再生能力,研究人员在视神经撞击模型中诱导了OSK的表达。
实验结果表明,即使在连续诱导15个月后,OSK的表达也没有引起视网膜的任何肿瘤或结构改变。在12个月大的小鼠中,OSK治疗使RGC的存活加倍,类似于在1个月和3个月大的小鼠中观察到的结果。虽然大鼠的轴突再生稍弱,但当治疗延长3周后,轴突再生仍然强劲。这些数据表明,衰老并不会大大降低OSK转录因子诱导轴突再生的能力。OSK诱导的时间越长,轴突延长的距离越大。
考虑到OSK在损伤后诱导的效果以及Yamanaka因子在体外逆转DNA甲基化年龄的能力,研究人员推测OSK可能通过拮抗损伤对DNA甲基化的影响而对轴突再生起作用。随后的实验发现,在损伤后第4天,RGC经历了DNA甲基化年龄的加速,而OSK表达抵消了这种作用。即OSK逆转了损伤引起的DNA甲基化变化。
接下来研究人员试图了解OSK诱导的DNA甲基化变化是否对RGC存活和轴突再生是必要的。因此通过研究去甲基化酶TET1–TET3的作用证明:为了使OSK保护RGCs和恢复轴突, DNA去甲基化的活性是必要的。
后续的实验证明在人神经元中也观察到了OSK表达促进轴突再生。基于此,研究人员青光眼和自然衰老导致的视力下降小鼠模型中开展了相关实验。
结果令人惊喜,在青光眼小鼠模型中,OSK治疗后的小鼠视力显著提高:视网膜神经节细胞轴突密度恢复的与非青光眼相当,光-运动反应试验表明,因眼压升高而丧失的视力有一半得以恢复。
在因自然老化引起的视力下降小鼠模型中,OSK让12月龄小鼠的下降视力得以恢复,但是没有恢复18月龄小鼠的视力,研究人员认为这可能与年龄相关的角膜不透明性增加有关。
总结
也许等不了多久,基于基因疗法或其它手段,通过表观遗传重编程促进组织修复,可以逆转人类与年龄相关的衰退,“长生不老”指日可待!
未来如果能在更多组织器官中复制这一结果,很多与年龄相关的疾病,或许就多一种新的治疗方式。