法医学杂志

期刊简介

  《法医学杂志》(CN 31-1472/R,ISSN 1004-5619)创刊于1985年7月,由中华人民共和国司法部主管、司法部司法鉴定科学技术研究所主办,是我国第一本向国内外公开发行的国家级法医学专业学术刊物。本刊创刊时为每期48页季刊,1996年改为每期64页,2005年改为每期80页,2006年变更为每期80页双月刊。2009年起正文纸张由80克双胶纸改为80克UPM雅光纸,采用了图文混排方式。

  《法医学杂志》的办刊宗旨为:提供法医学及其相关学科的新理论、新技术、新方法等信息,为维护司法公正、贯彻依法治国的方略服务,促进国内外同行的学术交流和本学科的发展。

  《法医学杂志》刊登的主要内容包括:法医病理学、法医临床学、法医物证学、司法精神病学、法医毒理学、法医昆虫学和毒(药)物分析、医疗纠纷、医疗事故的法医学鉴定以及交通事故鉴定等现代司法鉴定科学方面的最新成果和动态。既刊登大量国家自然科学基金等大型项目资助的创新性科研成果,也刊登许多对实际鉴定工作大有帮助的实用性技术和经验交流类文章,全面地为法医工作者提供科研、教学、检案等方面的新动向、新进展、新技术、新经验。

  开设的栏目有:研究论著、技术与应用、案例分析、经验交流、医疗纠纷、疑难案例报道、综述、专题讲座和教育培训等。

  主要作者和读者群为:公安、检察、法院、司法行政系统等部门的法医工作者,各类司法鉴定机构中的法医学鉴定人,高校法医院系、法律系的师生,卫生医疗单位的医务人员和法律工作者。

  本刊编辑部多年来奉行高水平、高质量、高品位的办刊方针,在办刊中严格执行有关国家标准和规范以及审校制度,编辑人员对稿件的处理精益求精。录用文章学术水平高,实用性强,栏目内容丰富,版面设计合理,图表制作精确,印刷装帧精良,深受法医学界专业人员、高校师生及司法鉴定领域中相关人员的欢迎和认可。为促进法医学学科发展、提高本学科的科研和检案水平以及法医学人才培养作出了重要贡献。

  本刊自1997年被美国生物医学文献资料数据库MEDLINE收录,是中国第一也是目前唯一一本进入该数据库的法医学类期刊。自1999年起陆续被《万方数据》、《中国学术期刊(光盘版)》、《中国学术期刊综合评价数据库》统计源期刊、《中国期刊全文数据库》、《中国核心期刊(遴选)数据库》等全文收录;被全国医学综合性检索工具《中文科技资料目录-医药卫生》列为核心期刊收录;获首届《CAJ-CD规范》执行优秀期刊奖。2008年起本刊被确定为荷兰医学文摘(EMBASE)数据库收录期刊和中国《全国报刊索引》核心期刊。2009年被“中国科技论文统计源期刊”(中国科技核心期刊)收录。2011年被中国科学引文数据库(CSCD)收录。2012年被Elsevier公司二次文献数据库(Scopus)收录。2013年 超星数字期刊。2015年 第四届《中国学术期刊评价研究报告(武大版)(2015-2016)》中,被评为“RCCSE中国核心学术期刊(A)”。2016年4月《法医学杂志》被中国社会科学院中国社会科学评价中心《中国人文社会科学期刊评价报告(AMI)》的引文数据库收录为来源刊;10月,获准加入WHO西太平洋区医学索引(The Western Pacific Region Index Medicus, WPRIM)。

  根据期刊引证报告最新统计,《法医学杂志》影响因子逐年上升,目前在法医学类期刊中,其影响因子名列榜首。

               

​SCI写作暗黑周记:当癌症基因组分析遇上导师的“再来一版”

时间:2025-07-08 17:44:25

这周实验室的咖啡机又罢工了,而我的论文修改方案也像那台老机器一样,在导师的“温柔建议”下彻底卡壳。事情是这样的:上周我兴冲冲交了一版癌症基因组分析的结果,导师扫了一眼说:“数据量不够,实验设计得重来。”——这句话的杀伤力,堪比PCR跑胶时发现引物二聚体比目的条带还亮。

一、实验设计的“俄罗斯套娃”困境

生物信息学的实验设计,本质上是在玩一种叫“既要又要还要”的套娃游戏。比如我的课题:从TCGA数据库扒拉三阴性乳腺癌的RNA-seq数据,比较癌与正常组织的差异表达基因。听起来简单?但导师的要求是:“样本量再扩大,对照组再加一组炎症组织,顺便把甲基化数据也整合进来。”——这感觉就像点了一碗牛肉面,结果老板端上来满汉全席的食材清单。

TCGA数据库确实强大,33种癌症基因组数据任君挑选,但数据处理堪比在火锅里捞一根特定品牌的粉丝——你得先学会用Bioconductor工具包清洗数据,再用DESeq2做差异分析,最后还得用KEGG通路图证明你的基因不是随机蹦迪。而当我试图用“数据库太难整理”当借口时,导师微微一笑:“生物信息学的精髓,就是把抽象理论变成实用技能。”

二、导师博弈中的“生存算法”

和导师讨论方案修改,本质上是一场基于动态规划的博弈。我的策略分三步:

1.假装镇定:先点头说“这个方向很有意义”,其实内心在疯狂计算加班时长;

2.文献防御:火速搜20篇最新论文,证明我的原始设计“虽然朴素但经典”——可惜导师早有准备,反手甩出一篇《Nature》子刊:“你看,人家连单细胞测序都加上了。”

3.迂回妥协:最终达成协议:保留原分析框架,但增加拷贝数变异验证。这就像谈判后同意给汉堡加片芝士,虽然成本涨了30%,但至少不用重做整个汉堡。

关键技巧在于:把导师的“挑刺”翻译成学术需求。比如“结果不够可靠”=“需要实验验证”,“方法陈旧”=“建议引入机器学习”。毕竟生物信息学的伦理准则之一就是——让导师的批注看起来像科学建议,而不是个人偏好。

三、崩溃自救指南:当代码跑崩时

重做实验设计的那天,我的R脚本报了第14次错误。屏幕上的红色警告像肿瘤突变信号一样刺眼,而我的精神状态堪比被反复比对到不同参考基因组上的reads。这时候必须启动自救程序:

1.咖啡因疗法:实验室的浓缩咖啡液浓度,与debug成功率呈正相关;

2.同事吐槽会:和隔壁做湿实验的哥们互相安慰。他说他的细胞又污染了,我说我的p值又飘了——最后我们达成共识:科研就是互相证明“你比我惨”的过程;

3.玄学调试:把电脑桌面换成DNA双螺旋,虔诚地念叨三遍“显著性小于0.05”。

当然,真正管用的还是回归技术本质:检查数据预处理是否合理(比如过滤低质量reads像淘米一样仔细),确认差异分析参数没设错(别把FDR校正当成调味料随便撒),最后记得引物设计要避开发夹结构——否则你的PCR结果会比论文拒稿信还让人心碎。

尾声:暗黑周记的生存率曲线

现在我的修改版方案终于躺在了导师邮箱里,存活概率大概和癌症患者的五年生存率差不多。但生物信息学教会我:只要持续更新知识(比如追最新算法像追剧),保持工具库与时俱进(从Samtools到AI建模),再难的数据也能熬成一锅高汤。

至于下次导师会不会又让“再来一版”?没关系,科研人的韧性就像circRNA——没有终点,但总能闭环。